chemistry. Molecules, 26(3), 666.
https://doi.org/10.3390/molecules26030666
Burt, S., Vlielander, R., Haagsman, H., &
Veldhuizen, E. (2021). Synergistic activity of
carvacrol with other plant compounds against
antibiotic-resistant bacteria. Frontiers in
Microbiology, 12, 658802.
https://doi.org/10.3389/fmicb.2021.658802
FAO. (2020). The FAO Action Plan on
Antimicrobial Resistance 2021–2025. Food
and Agriculture Organization of the United
Nations. https://acortar.link/efFwOz
Gadde, U., Kim, W. H., Oh, S. T., & Lillehoj, H. S.
(2021). Alternatives to antibiotics for
maximizing growth performance and feed
efficiency in poultry: a review. Animal Health
Research, 22(1), 1–10.
https://doi.org/10.1017/S1466252321000020
Hinojosa R, De la Cruz R, Espinoza C. (2020).
Revistas de ciencias agrícolas de Suramérica
indexadas en SciELO Relación con
indicadores de desarrollo de la agricultura.
Información, cultura y sociedad, 43, 53-68.
https://doi.org/10.34096/ics.i43.8372
Hinojosa, R., Vitor, R., Gonzales, J., Quispe, Y.,
Molina, R., Ricra, J., Sánchez, E. y Quispe, J.
(2019). Sustentabilidad de los sistemas de
producción agropecuaria. Puriq, 1 (02), 198–
207. https://doi.org/10.37073/puriq.1.02.31
Hashemi, S. R., & Davoodi, H. (2020). Herbal
plants and their derivatives as growth and
health promoters in animal nutrition.
Veterinary Research Communications, 44(2),
75–91. https://doi.org/10.1007/s11259-020-
09767-2
Marchese, A., Arciola, C. R., Barbieri, R., Silva, A.
S., Nabavi, S. F., Sokeng, A. J. T., ... &
Nabavi, S. M. (2019). Update on
monoterpenes as antimicrobial agents: A
particular focus on p-cymene. Materials,
12(13), 2470.
https://doi.org/10.3390/ma12152470
Abd, M., El-Saadony, M., Elbestawy, A., El-Shall,
N., Saad, A., Salem, H., El-Tahan, A.,
Khafaga, A., Taha, A., AbuQamar, S. & El-
Tarabily, K. (2022). Necrotic enteritis in
broiler chickens: disease characteristics and
prevention using organic antibiotic. Poultry
Science, 101 (2), 101590.
https://doi.org/10.1016/j.psj.2021.101590.
OIE. (2022). World Animal Health Information
Database (WAHIS). World Organisation for
Animal Health.
Ramírez, S. Y. (2020). Evaluación del aceite
esencial de orégano (Lippia origanoides)
como alternativa al uso de antibióticos
promotores de crecimiento en ponedoras ISA
Brown. Universidad del Tolima.
Reyes, F., Cervantes, M. I., Bach, H., López, A., &
Palou, E. (2020). Antimicrobial activity of
oregano essential oil (Origanum vulgare L.)
against Salmonella Typhimurium and
Staphylococcus aureus in food systems. Food
Control, 118, 107437.
https://doi.org/10.1016/j.foodcont.2020.1074
37
Ruiz, A. V. (2021). Ajo, orégano y tomillo,
opciones para remplazar los antibióticos en la
industria avícola.
https://acortar.link/oVZMbM
Silva, N. C. C., & Domingues, F. C. (2020).
Antimicrobial activity of carvacrol and
thymol: a review. Food Science and
Technology International, 26(5), 431–446.
https://doi.org/10.1177/1082013219891680
WHO. (2019). Critically Important Antimicrobials
for Human Medicine (6th revision). World
Health Organization.
Windisch, W., Schedle, K., Plitzner, C., &
Kroismayr, A. (2021). Use of phytogenic
products as feed additives for swine and
poultry. Journal of Animal Science, 99(2),
skab011. https://doi.org/10.1093/jas/skab011
Xian, L., Wang, Y., Peng, D., Zang, L., Xu, Y., Wu,
Y., Li, J., & Feng, J. (2024). Dietary Oregano
Oil Supplementation Improved Egg Quality
by Altering Cecal Microbiota Function in
Laying Hens. Animals, 14(22), 3235.
https://doi.org/10.3390/ani14223235
Zhao, X., Yang, J., Gao, X., Liu, X., & Yang, F.
(2021). Effects of oregano essential oil
supplementation on growth performance,
antioxidant capacity, and immune response in
laying hens. Poultry Science, 100(6), 101013.
https://doi.org/10.1016/j.psj.2021.101013
Zheng, W., Zhu, J., & Guo, Y. (2022). Evaluation of
antioxidant activities of oregano and its major
components in vitro and in vivo. Antioxidants,
11(3), 498.
https://doi.org/10.3390/antiox11030498